Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV

弓形虫脑炎与艾滋病毒合并感染时人类脑蛋白质组的宿主反应概况

阅读:5
作者:Apeksha Sahu, Satwant Kumar, Sreelakshmi K Sreenivasamurthy, Lakshmi Dhevi N Selvan, Anil K Madugundu, Soujanya D Yelamanchi, Vinuth N Puttamallesh, Gourav Dey, Abhijith K Anil, Anand Srinivasan, Kanchan K Mukherjee, Harsha Gowda, Parthasarathy Satishchandra, Anita Mahadevan, Akhilesh Pandey, Thotte

Background

Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite

Conclusions

Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis.

Results

We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism. Conclusions: Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。