Autophagy modulation alleviates cryoinjury in murine spermatogonial stem cell cryopreservation

自噬调节减轻小鼠精原干细胞冷冻保存中的冷冻损伤

阅读:5
作者:Sang-Eun Jung, Jin Seop Ahn, Yong-Hee Kim, Hui-Jo Oh, Bang-Jin Kim, Sun-Uk Kim, Buom-Yong Ryu

Background

Cryopreservation can expand the usefulness of spermatogonial stem cells (SSCs) in various fields. However, previous investigations that have attempted to modulate cryoinjury-induced mechanisms to increase cryoprotective efficiency have mainly focused on apoptosis and necrosis. Objectives: This study aimed to establish an effective molecular-based cryoprotectant for SSC cryopreservation via autophagy modulation. Materials and

Conclusion

A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.

Discussion

A basal level of autophagy is more essential for resilience in frozen SSCs after thawing, rather than the excessive activation or inhibition of autophagy. Conclusion: A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.

Methods

To determine the efficacy of autophagy modulation, we assessed the recovery rate and relative proliferation rate and performed western blotting for the determination of autophagy flux, immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization, and spermatogonial transplantation for in vivo SSC functional activity.

Results

The results showed that a basal level of autophagy caused a higher relative proliferation rate (pifithrin-μ 0.01 μM, 184.2 ± 11.2%; 3-methyladenine 0.01 μM, 175.3 ± 10.3%; pifithrin-μ 0.01 μM + 3-methyladenine 0.01 μM, P3, 224.6 ± 22.3%) than the DMSO control (100 ± 6.2%). All treatment groups exhibited normal characteristics, suggesting that these modulators could be used as effective cryoprotectants without changing the properties of the undifferentiated germ cells. According to the results of the in vivo spermatogonial transplantation assay, the colonies per total number of cultured SSCs was significantly higher in the pifithrin-μ 0.01 μM (1596.7 ± 172.5 colonies), 3-methyladenine 0.01 μM (1522.1 ± 179.2 colonies), and P3 (1727.5 ± 196.5 colonies) treatment groups than in the DMSO control (842.8 ± 110.08 colonies), which was comparable to that of the fresh control (1882.1 ± 132.1 colonies).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。