Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila

通过视觉反馈快速调整姿势控制是果蝇行走时凝视稳定的基础

阅读:5
作者:Tomás L Cruz, Sebastián Malagón Pérez, M Eugenia Chiappe

Abstract

Locomotion requires a balance between mechanical stability and movement flexibility to achieve behavioral goals despite noisy neuromuscular systems, but rarely is it considered how this balance is orchestrated. We combined virtual reality tools with quantitative analysis of behavior to examine how Drosophila uses self-generated visual information (reafferent visual feedback) to control gaze during exploratory walking. We found that flies execute distinct motor programs coordinated across the body to maximize gaze stability. However, the presence of inherent variability in leg placement relative to the body jeopardizes fine control of gaze due to posture-stabilizing adjustments that lead to unintended changes in course direction. Surprisingly, whereas visual feedback is dispensable for head-body coordination, we found that self-generated visual signals tune postural reflexes to rapidly prevent turns rather than to promote compensatory rotations, a long-standing idea for visually guided course control. Together, these findings support a model in which visual feedback orchestrates the interplay between posture and gaze stability in a manner that is both goal dependent and motor-context specific.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。