Background
Chronic cadmium exposure has been associated with osteotoxicity in adults, but little is known concerning its effects on early growth, which has been shown to be impaired by cadmium. Objectives: Our
Conclusions
Childhood cadmium exposure was associated with several bone-related biomarkers and some of the associations differed by gender. https://doi.org/10.1289/EHP3655.
Methods
For 504 children in a mother-child cohort in Bangladesh, cadmium exposure was assessed by concentrations in urine (U-Cd, long-term exposure) and erythrocytes (Ery-Cd, ongoing exposure) at 9 and 4.5 y of age, and in their mothers during pregnancy. Biomarkers of bone remodeling [urinary deoxypyridinoline (DPD), urinary calcium, plasma parathyroid hormone, osteocalcin, vitamin D3, insulin-like growth factor (IGF) 1, IGF binding protein 3, thyroid stimulating hormone] were measured at 9 y of age.
Results
In multivariable-adjusted linear models, a doubling of concurrent U-Cd was associated with a mean increase in osteocalcin of [Formula: see text] (95% CI: 0.042, 5.9) and in urinary DPD of [Formula: see text] (95% CI: 12, 32). In a combined exposure model, a doubling of maternal Ery-Cd was associated with a mean increase in urinary DPD of [Formula: see text] (95% CI: [Formula: see text], 30). Stratifying the osteocalcin model by gender ([Formula: see text] 0.001), a doubling of concurrent U-Cd was associated with a mean decrease in osteocalcin of [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) in boys and a mean increase of [Formula: see text] (95% CI: 5.4, 13) in girls. The same pattern was seen with U-Cd at 4.5 y of age ([Formula: see text] 0.016). Children's U-Cd and Ery-Cd, concurrent and at 4.5 y of age, were inversely associated with vitamin D3. Conclusions: Childhood cadmium exposure was associated with several bone-related biomarkers and some of the associations differed by gender. https://doi.org/10.1289/EHP3655.
