Berberine alleviates nonalcoholic fatty liver induced by a high-fat diet in mice by activating SIRT3

小檗碱通过激活 SIRT3 减轻小鼠高脂饮食诱发的非酒精性脂肪肝

阅读:5
作者:Xi Xu, Xiao-Peng Zhu, Jin-Yun Bai, Pu Xia, Yu Li, Yan Lu, Xiao-Ying Li, Xin Gao

Abstract

Berberine (BBR) shows promising effects in the treatment of nonalcoholic fatty liver disease (NAFLD) by influencing various metabolic aspects. Inhibition of mitochondrial β-oxidation (β-OX) participates in the pathogenesis of NAFLD. Silent mating-type information regulation 2 homolog 3 (SIRT3) has been reported to regulate mitochondrial β-OX by deacetylating its substrate, long-chain acyl-coenzyme A dehydrogenase (LCAD). This study aimed to explore whether BBR can promote mitochondrial β-OX and the role of SIRT3 as well as the mechanisms underlying the effects of BBR on hepatic lipid metabolism in mice fed a high-fat diet (HFD). BBR can significantly improve systematic and hepatic lipid metabolism in HFD-fed mice. Metabolomics analysis revealed that β-OX was inhibited in HFD-induced mice, as indicated by the reduced production of short and medium carbon chain acyl-carnitines, the activated form of free fatty acids, via β-OX, which was reversed by BBR intervention. Exploration of the mechanism found that BBR intervention reversed the down-regulation of SIRT3 and decreased the LCAD hyperacetylation level in HFD-fed mice. SIRT3 knockout (KO) mice were used to identify the role of SIRT3 in the BBR's influence of β-OX. The beneficial effects of BBR on systemic and hepatic metabolism were profoundly attenuated in KO mice. Moreover, the promotive effect of BBR on β-OX in HFD-induced mice was partially abolished in KO mice. These results suggested that BBR alleviates HFD-induced inhibition of fatty acid β-OX partly through SIRT3-mediated LCAD deacetylation, which may provide a novel mechanism and support BBR as a promising therapeutic for NAFLD.-Xu, X., Zhu, X.-P., Bai, J.-Y., Xia, P., Li, Y., Lu, Y., Li, X.-Y., Gao, X. Berberine alleviates nonalcoholic fatty liver induced by a high-fat diet in mice by activating SIRT3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。