Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus

西尼罗河病毒蚊子载体 Culex quinquefasciatus 中优化的体外 CRISPR/Cas9 基因编辑工具

阅读:7
作者:Tran Zen B Torres, Brian C Prince, Alexis Robison, Claudia Rückert

Abstract

Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。