Increased Runx2 expression associated with enhanced Wnt signaling in PDLLA internal fixation for fracture treatment

PDLLA 内固定治疗骨折时 Runx2 表达增加与 Wnt 信号增强相关

阅读:4
作者:Zhuoyan Ling, Lei Wu, Gaolong Shi, Li Chen, Qirong Dong

Abstract

Poly-D-L lactide (PDLLA) biodegradable implants to heal fractures are widely applied in orthopedic surgeries. However, whether the process of fracture healing is regulated differently when PDLLA is used compared with traditional metal materials remains unclear. Runt-related transcription factor 2 (Runx2) and canonical Wnt signaling are essential and may interact reciprocally in the regulation of osteogenesis during bone repair. In the present study, a rat femoral open osteotomy model was used to compare the curative efficacy of a PDLLA rod and Kirschner wire under intramedullary fixation for fracture treatment. The dynamic expression of Runx2 and key components of the canonical Wnt signaling in callus tissue during fracture healing was also investigated. The results of the current study indicate that at weeks 4 and 6 following fixation, the callus bone structural parameters of microCT were significantly improved by PDLLA rod compared to that of Kirschner wire. In addition, at weeks 4 and 6 after fixation, the protein and mRNA expression of Runx2 and the positive regulators of canonical Wnt signaling, such as Wnts and β-catenin, were significantly increased. However, the protein and mRNA expression levels of the negative regulators of canonical Wnt signaling, such as glycogen synthase kinase-3β, were significantly decreased in callus tissue when treated with PDLLA rod compared with Kirschner wire. Collectively, these data indicate that compared to the traditional metal material, using PDLLA internal fixation for fracture treatment may further improve bone formation, which is associated with the increased expression of Runx2 and the enhancement of canonical Wnt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。