Calcium Export from Neurons and Multi-Kinase Signaling Cascades Contribute to Ouabain Neuroprotection in Hyperhomocysteinemia

神经元钙离子输出和多激酶信号级联促进乌巴因在高同型半胱氨酸血症中发挥神经保护作用

阅读:5
作者:Maria A Ivanova, Arina D Kokorina, Polina D Timofeeva, Tatiana V Karelina, Polina A Abushik, Julia D Stepanenko, Dmitry A Sibarov, Sergei M Antonov

Abstract

Pathological homocysteine (HCY) accumulation in the human plasma, known as hyperhomocysteinemia, exacerbates neurodegenerative diseases because, in the brain, this amino acid acts as a persistent N-methyl-d-aspartate receptor agonist. We studied the effects of 0.1-1 nM ouabain on intracellular Ca2+ signaling, mitochondrial inner membrane voltage (φmit), and cell viability in primary cultures of rat cortical neurons in glutamate and HCY neurotoxic insults. In addition, apoptosis-related protein expression and the involvement of some kinases in ouabain-mediated effects were evaluated. In short insults, HCY was less potent than glutamate as a neurotoxic agent and induced a 20% loss of φmit, whereas glutamate caused a 70% decrease of this value. Subnanomolar ouabain exhibited immediate and postponed neuroprotective effects on neurons. (1) Ouabain rapidly reduced the Ca2+ overload of neurons and loss of φmit evoked by glutamate and HCY that rescued neurons in short insults. (2) In prolonged 24 h excitotoxic insults, ouabain prevented neuronal apoptosis, triggering proteinkinase A and proteinkinase C dependent intracellular neuroprotective cascades for HCY, but not for glutamate. We, therefore, demonstrated here the role of PKC and PKA involving pathways in neuronal survival caused by ouabain in hyperhomocysteinemia, which suggests existence of different appropriate pharmacological treatment for hyperhomocysteinemia and glutamate excitotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。