Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer's-associated amyloid beta peptide

人类妊娠区蛋白可稳定错误折叠的蛋白质,包括先兆子痫和阿尔茨海默病相关的淀粉样β肽

阅读:7
作者:Jordan H Cater, Janet R Kumita, Rafaa Zeineddine Abdallah, Guomao Zhao, Ana Bernardo-Gancedo, Amanda Henry, Wendy Winata, Mengna Chi, Brin S F Grenyer, Michelle L Townsend, Marie Ranson, Catalin S Buhimschi, D Stephen Charnock-Jones, Christopher M Dobson, Mark R Wilson, Irina A Buhimschi, Amy R Wyat

Abstract

Protein misfolding underlies the pathology of a large number of human disorders, many of which are age-related. An exception to this is preeclampsia, a leading cause of pregnancy-associated morbidity and mortality in which misfolded proteins accumulate in body fluids and the placenta. We demonstrate that pregnancy zone protein (PZP), which is dramatically elevated in maternal plasma during pregnancy, efficiently inhibits in vitro the aggregation of misfolded proteins, including the amyloid beta peptide (Aβ) that is implicated in preeclampsia as well as with Alzheimer's disease. The mechanism by which this inhibition occurs involves the formation of stable complexes between PZP and monomeric Aβ or small soluble Aβ oligomers formed early in the aggregation pathway. The chaperone activity of PZP is more efficient than that of the closely related protein alpha-2-macroglobulin (α2M), although the chaperone activity of α2M is enhanced by inducing its dissociation into PZP-like dimers. By immunohistochemistry analysis, PZP is found primarily in extravillous trophoblasts in the placenta. In severe preeclampsia, PZP-positive extravillous trophoblasts are adjacent to extracellular plaques containing Aβ, but PZP is not abundant within extracellular plaques. Our data support the conclusion that the up-regulation of PZP during pregnancy represents a major maternal adaptation that helps to maintain extracellular proteostasis during gestation in humans. We propose that overwhelming or disrupting the chaperone function of PZP could underlie the accumulation of misfolded proteins in vivo. Attempts to characterize extracellular proteostasis in pregnancy will potentially have broad-reaching significance for understanding disease-related protein misfolding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。