Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen

基于热退火银纳米结构的局部表面等离子体共振 (LSPR) 生物传感器,具有片上血浆分离功能,用于检测登革热非结构蛋白 NS1 抗原

阅读:8
作者:Pearlson Prashanth Austin Suthanthiraraj, Ashis Kumar Sen

Abstract

Early diagnosis of dengue biomarkers by employing a technology that is less labor- and time-intensive and offers higher sensitivity and lower limits of detection would find great significance in the developing world. Here, we report the development of a biosensor that exploits the localized surface plasmon resonance (LSPR) effect of silver nanostructures, created via thermal annealing of thin metal film, to detect dengue NS1 antigen, which appears as early as the onset of infection. The biosensor integrates membrane-based blood-plasma separation to develop lab-on-chip device that facilitates rapid diagnosis (within 30 min) of dengue NS1 antigen from a small volume (10 µL) of whole blood. The refractive index (RI) sensitivity of the LSPR biosensor was verified by using aqueous glycerol (0-100 wt%) which showed that it is sufficiently sensitive to detect 10-3 change in RI, which is comparable to that observed with protein-protein interaction. The RI sensitivity was utilized to demonstrate protein binding by using bovine serum albumin and detection of antibody-antigen immune reaction by binding human chorionic gonadotropin antigen to immunoglobulin antibody immobilized in our LSPR biosensor. Next, we demonstrated the detection of NS1 in plasma obtained via centrifugation and in plasma separated on-chip. From 10 µL of whole blood spiked with NS1 antigen, our biosensor reliably detects 0.06 µg/mL of NS1, which lies within the clinical limit observed during the first seven days of infection, with a sensitivity of 9 nm/(µg/mL). These results confirm that the proposed LSPR biosensor can potentially be used in point-of-care dengue diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。