Age-related loss of mitochondrial glutathione exacerbates menadione-induced inhibition of Complex I

与年龄有关的线粒体谷胱甘肽损失加剧了甲萘醌诱导的复合物 I 抑制

阅读:6
作者:Nicholas O Thomas, Kate P Shay, Tory M Hagen

Abstract

The role of mitochondrial GSH (mGSH) in the enhanced age-related susceptibility to xenobiotic toxicity is not well defined. We determined mGSH status and indices of mitochondrial bioenergetics in hepatocytes from young and old F344 rats treated with 300 μM menadione, a concentration that causes 50% cell death in old. At this concentration, mGSH was significantly lost only in hepatocytes from old rats, and with near total depletion due to lower basal mGSH in aged cells. In old hepatocytes, menadione caused mitochondrial membrane potential to collapse, as well as significant deficits in maximal O2 consumption and respiratory reserve capacity, indicators of cellular bioenergetic resiliency. Further examination revealed that the menadione-mediated loss of respiratory reserve capacity in aged hepatocytes was from significant inhibition of Complex I activity and increased proton leak, for which an increase in Complex II activity was not able to compensate. These data demonstrate an age-related increase in mitochondrial susceptibility to a redox-cycling challenge, particularly in regards to Complex I activity, and provide a plausible mechanism to link this vulnerability to mGSH perturbations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。