Rho kinase-dependent activation of SOX9 in chondrocytes

软骨细胞中 Rho 激酶依赖的 SOX9 激活

阅读:6
作者:Dominik R Haudenschild, Jianfen Chen, Nina Pang, Martin K Lotz, Darryl D D'Lima

Conclusion

These results demonstrate a new interaction that directly links ROCK to increased cartilage matrix production via activation of SOX9 in response to mechanical and growth factor stimulation.

Methods

Human SW1353 chondrosarcoma cells were transfected with constructs coding for RhoA, ROCK, Lim kinase, and SOX9. The interaction between ROCK and SOX9 was tested on purified proteins, and was verified within a cellular context using induced overexpression and activation of the Rho pathway. The effects of SOX9 transcriptional activation were quantified with a luciferase reporter plasmid containing SOX9 binding sites from the COL2A1 enhancer element.

Objective

The transcription factor SOX9 directly regulates the expression of the major proteoglycans and collagens comprising the cartilage extracellular matrix. The DNA binding activity and cellular localization of SOX9 is controlled through posttranslational modifications, including phosphorylation. The activity of Rho kinase (ROCK) has profound effects on the actin cytoskeleton, and these effects are instrumental in determining the phenotype and differentiation of chondrocytes. However, the mechanisms linking ROCK to altered chondrocyte gene expression remain unknown. The purpose of the present study was to test for a direct interaction between ROCK and SOX9.

Results

SOX9 was found to contain a consensus phosphorylation site for ROCK. In vitro, ROCK directly phosphorylated SOX9 at Ser(181), and the overexpression of ROCK or the activation of the RhoA pathway in SW1353 chondrosarcoma cells increased SOX9(Ser181) phosphorylation. ROCK caused a dose-dependent increase in the transcription of a SOX9-luciferase reporter construct, and increased phosphorylation and nuclear accumulation of SOX9 protein in response to transforming growth factor beta treatment and mechanical compression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。