Progestin-induced heart and neural crest derivatives-expressed transcript 2 inhibits angiopoietin 2 via fibroblast growth factor 9 in human endometrial stromal cells

孕激素诱导的心脏和神经嵴衍生物表达的转录本 2 通过人子宫内膜基质细胞中的成纤维细胞生长因子 9 抑制血管生成素 2

阅读:5
作者:Hiromi Murata, Tomoko Tsuzuki, Takeharu Kido, Maiko Kakita-Kobayashi, Naoko Kida, Yoji Hisamatsu, Hidetaka Okada

Abstract

Heart and neural crest derivatives-expressed transcript 2 (HAND2) is a key transcription factor in progestin-induced decidualization of human endometrial stromal cells (ESCs). In the mouse, HAND2 plays an important role in uterine receptivity by suppressing several fibroblast growth factors (FGFs). However, the regulation of FGF family members by progestin-induced HAND2 and the role of FGF in vascular regeneration in the endometrium remains poorly understood. To investigate these molecular mechanisms, primary human ESCs were cultured with estradiol (E2), medroxyprogesterone acetate (MPA), progesterone receptor (PR) antagonist RU486, HAND2-specific small interfering RNA (siRNA), and recombinant FGF. The expression levels of FGF family members, HAND2, angiopoietin (ANGPT), and vascular endothelial growth factor (VEGF) were assessed by real-time PCR and ELISA. Out of six FGF genes known to be expressed in the human endometrium, only one, FGF9, was significantly downregulated in human ESCs after 3 days of progestin treatment. E2 + MPA attenuated the mRNA and protein levels of FGF9 during decidualization of ESCs, and this effect was blocked by RU486. Silencing of HAND2 significantly increased FGF9 expression in ESCs treated with E2 + MPA. Moreover, FGF9 activated FGF receptor in human ESCs, triggering ANGPT2 production, which resulted in enhancement of the ANGPT2/ANGPT1 protein ratio. Taken together, progestin-PR signaling and its target HAND2 play an essential role in FGF9 suppression in the human endometrium. In addition, progestin-induced HAND2 inhibits ANGPT2 production by suppressing FGF9 in ESCs. These results suggest that HAND2 may contribute to endometrial vascular maturation by regulating FGF9 during decidualization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。