PPARβ/δ activation protects against hepatic ischaemia-reperfusion injury

PPARβ/δ激活可防止肝脏缺血再灌注损伤

阅读:8
作者:Baolin Qian, Chaoqun Wang, Xiaozhuang Li, Panfei Ma, Liqian Dong, Benqiang Shen, Huibo Wu, Nana Li, Kai Kang, Yong Ma

Aims

Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARβ/δ in HIRI remains unclear.

Background and aims

Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARβ/δ in HIRI remains unclear.

Conclusions

PPARβ/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARβ/δ is a potential therapeutic target for HIRI.

Methods

Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARβ/δ.

Results

We found that PPARβ/δ expression was increased in the I/R and A/R models. Overexpression of PPARβ/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARβ/δ in hepatocytes aggravated A/R injury. Activation of PPARβ/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARβ/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARβ/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARβ/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARβ/δ deletion was significantly enriched in the NF-κB pathway. PPARβ/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. Conclusions: PPARβ/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARβ/δ is a potential therapeutic target for HIRI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。