Abstract
In this study, we have examined two cysteine modifications resulting from sample preparation for protein characterization by mass spectrometry (MS): (1) a previously observed conversion of cysteine into dehydroalanine, now found in the case of disulfide mapping and (2) a novel modification corresponding to conversion of cysteine into alanine. Using model peptides, the conversion of cysteine into dehydroalanine via beta-elimination of a disulfide bond was seen to result from the conditions of typical tryptic digestion (37 degrees C, pH 7.0-9.0) without disulfide reduction and alkylation. Furthermore, the surprising conversion of cysteine into alanine was shown to occur by heating cysteine-containing peptides in the presence of a phosphine (tris(2-carboxyethyl)phosphine hydrochloride (TCEP)). The formation of alanine from cysteine, investigated by performing experiments in H(2)O or D(2)O, suggested a radical-based desulfurization mechanism unrelated to beta-elimination. Importantly, an understanding of the mechanism and conditions favorable for cysteine desulfurization provides insight for the establishment of improved sample preparation procedures of protein analysis.
