The chemokine receptor antagonist, TAK-779, decreased experimental autoimmune encephalomyelitis by reducing inflammatory cell migration into the central nervous system, without affecting T cell function

趋化因子受体拮抗剂 TAK-779 可通过减少炎症细胞向中枢神经系统的迁移来减轻实验性自身免疫性脑脊髓炎,而不会影响 T 细胞功能

阅读:5
作者:Jia Ni, Yi-Na Zhu, Xiang-Gen Zhong, Yu Ding, Li-Fei Hou, Xian-Kun Tong, Wei Tang, Shiro Ono, Yi-Fu Yang, Jian-Ping Zuo

Background and purpose

The C-C chemokine receptor CCR5, and the C-X-C chemokine receptor CXCR3 are involved in the regulation of T cell-mediated immune responses, and in the migration and activation of these cells. To determine whether blockade of these chemokine receptors modulated inflammatory responses in the central nervous sytem (CNS), we investigated the effect of a non-peptide chemokine receptor antagonist, TAK-779, in mice with experimental autoimmune encephalomyelitis (EAE). Experimental approach: EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein (MOG) 35-55. TAK-779 was injected s.c. once a day after immunization. Disease incidence and severity (over 3 weeks) were monitored by histopathological evaluation and FACS assay of inflammatory cells infiltrating into the spinal cord, polymerase chain reaction quantification of mRNA expression, assay of T cell proliferation, by [3H]-thymidine incorporation and cytokine production by enzyme-linked immunosorbent assay. Key

Purpose

The C-C chemokine receptor CCR5, and the C-X-C chemokine receptor CXCR3 are involved in the regulation of T cell-mediated immune responses, and in the migration and activation of these cells. To determine whether blockade of these chemokine receptors modulated inflammatory responses in the central nervous sytem (CNS), we investigated the effect of a non-peptide chemokine receptor antagonist, TAK-779, in mice with experimental autoimmune encephalomyelitis (EAE). Experimental approach: EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein (MOG) 35-55. TAK-779 was injected s.c. once a day after immunization. Disease incidence and severity (over 3 weeks) were monitored by histopathological evaluation and FACS assay of inflammatory cells infiltrating into the spinal cord, polymerase chain reaction quantification of mRNA expression, assay of T cell proliferation, by [3H]-thymidine incorporation and cytokine production by enzyme-linked immunosorbent assay. Key

Results

Treatment with TAK-779 reduced incidence and severity of EAE. It strongly inhibited migration of CXCR3/CCR5 bearing CD4+, CD8+ and CD11b+ leukocytes to the CNS. TAK-779 did not reduce proliferation of anti-MOG T cells, the production of IFN-gamma by T cells or CXCR3 expression on T cells. In addition, TAK-779 did not affect production of IL-12 by antigen-presenting cells, CCR5 induction on T cells and the potential of MOG-specific T cells to transfer EAE. Conclusions and implications: TAK-779 restricted the development of MOG-induced EAE. This effect involved reduced migration of inflammatory cells into the CNS without affecting responses of anti-MOG T cells or the ability of MOG-specific T cells to transfer EAE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。