Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning

通过机器学习进行活细胞表型生物标志物微流体检测以对癌症患者进行风险分层

阅读:4
作者:Michael S Manak, Jonathan S Varsanik, Brad J Hogan, Matt J Whitfield, Wendell R Su, Nikhil Joshi, Nicolai Steinke, Andrew Min, Delaney Berger, Robert J Saphirstein, Gauri Dixit, Thiagarajan Meyyappan, Hui-May Chu, Kevin B Knopf, David M Albala, Grannum R Sant, Ashok C Chander

Abstract

The risk stratification of prostate cancer and breast cancer tumours from patients relies on histopathology, selective genomic testing, or on other methods employing fixed formalin tissue samples. However, static biomarker measurements from bulk fixed-tissue samples provide limited accuracy and actionability. Here, we report the development of a live-primary-cell phenotypic-biomarker assay with single-cell resolution, and its validation with prostate cancer and breast cancer tissue samples for the prediction of post-surgical adverse pathology. The assay includes a collagen-I/fibronectin extracellular-matrix formulation, dynamic live-cell biomarkers, a microfluidic device, machine-vision analysis and machine-learning algorithms, and generates predictive scores of adverse pathology at the time of surgery. Predictive scores for the risk stratification of 59 prostate cancer patients and 47 breast cancer patients, with values for area under the curve in receiver-operating-characteristic curves surpassing 80%, support the validation of the assay and its potential clinical applicability for the risk stratification of cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。