microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2

microRNA-203 通过上调 Msh 同源框 2 促进成骨细胞增殖、分化和迁移

阅读:5
作者:Haochuan Liu, Bing Chen, Yi Li

Abstract

Despite the improvements in fracture healing, about 10% of patients undergo abnormal healing. As a tumor suppressor, upregulation of microRNA (miR)-203 has been observed in osteogenic differentiation. Herein, we aimed to explore the functional role of miR-203 in osteoblasts as well as the underlying mechanisms. The expression of miR-203 in MC3T3-E1 cells that underwent osteogenic differentiation was determined by quantitative reverse transcription PCR (qRT-PCR). The effects of aberrantly expressed miR-203 on cell viability, migration, and expressions of proteins associated with proliferation, migration, and osteogenic differentiation were measured by using a Cell Counting Kit-8 assay, Transwell cell migration assay, and western blot/qRT-PCR, respectively. The possible downstream factor of miR-203 was subsequently studied. Finally, involvements of the mitogen-activated protein kinase (MAPK)/activator of transcription (STAT) pathways were assessed by western blot. We found that the miR-203 level was increased in osteogenic differentiation of MC3T3-E1 cells with increasing duration time (28th day, p < 0.001). After cell transfection, we interestingly found that miR-203 overexpression could increase cell viability (p < 0.05), promote proliferation, migration (p < 0.05), and osteogenic differentiation, and upregulate Msh homeobox 2 (Msx2) expression. Furthermore, Msx2 knockdown was proved to abrogate the effects of miR-203 overexpression on MC3T3-E1 cells. Finally, phosphorylated levels of key kinases in the MAPK/STAT pathways were increased by miR-203 overexpression via upregulating Msx2 expression. In conclusion, miR-203 overexpression promoted proliferation, migration, and osteogenic differentiation of MC3T3-E1 cells through upregulating Msx2 along with activation of the MAPK/STAT pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。