Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10

氧化应激传感器 Nrf2 与外来化合物激活的芳烃受体相互作用对人类 II 期解毒 UDP-葡萄糖醛酸转移酶 1A10 的调节

阅读:4
作者:Sandra Kalthoff, Ursula Ehmer, Nicole Freiberg, Michael P Manns, Christian P Strassburg

Abstract

The defense against oxidative stress is a critical feature that prevents cellular and DNA damage. UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of xenobiotics, mutagens, and reactive metabolites and thus act as indirect antioxidants. Aim of this study was to elucidate the regulation of UGTs expressed in the mucosa of the gastrointestinal tract by xenobiotics and the main mediator of antioxidant defense, Nrf2 (nuclear factor erythroid 2-related factor 2). Xenobiotic (XRE) and antioxidant (ARE) response elements were detected in the promoters of UGT1A8, UGT1A9, and UGT1A10. Reporter gene experiments demonstrated XRE-mediated induction by dioxin in addition to tert-butylhydroquinone (ARE)-mediated induction of UGT1A8 and UGT1A10, which are expressed in extrahepatic tissue in humans in vivo. The responsible XRE and ARE motifs were identified by mutagenesis. Small interfering RNA knockdown, electrophoretic mobility shifts, and supershifts identified a functional interaction of Nrf2 and the aryl hydrocarbon receptor (AhR). Induction of UGT1A8 and UGT1A10 requires Nrf2 and AhR. It proceeds by utilizing XRE- as well as ARE-binding motifs. In summary, we demonstrate the coordinated AhR- and Nrf2-dependent transcriptional regulation of human UGT1As. Cellular protection by glucuronidation is thus inducible by xenobiotics via AhR and by oxidative metabolites via Nrf2 linking glucuronidation to cellular protection and defense against oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。