CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer

CDK7 抑制可抑制 MYCN 驱动癌症中的超增强子相关致癌转录

阅读:8
作者:Edmond Chipumuro, Eugenio Marco, Camilla L Christensen, Nicholas Kwiatkowski, Tinghu Zhang, Clark M Hatheway, Brian J Abraham, Bandana Sharma, Caleb Yeung, Abigail Altabef, Antonio Perez-Atayde, Kwok-Kin Wong, Guo-Cheng Yuan, Nathanael S Gray, Richard A Young, Rani E George

Abstract

The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。