N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor

利用生物纳米孔传感器进行 N 端衍生化辅助识别单个氨基酸

阅读:6
作者:Xiaojun Wei, Dumei Ma, Zehui Zhang, Leon Y Wang, Jonathan L Gray, Libo Zhang, Tianyu Zhu, Xiaoqin Wang, Brian J Lenhart, Yingwu Yin, Qian Wang, Chang Liu

Abstract

Nanopore technology has been employed as a powerful tool for DNA sequencing and analysis. To extend this method to peptide sequencing, a necessary step is to profile individual amino acids (AAs) through their nanopore stochastic signals, which remains a great challenge because of the low signal-to-noise ratio and unpredictable conformational changes of AAs during their translocation through nanopores. We showed that the combination of an N-terminal derivatization strategy of AAs with nanopore technology could lead to effective in situ differentiation of AAs. Four different derivatization reactions have been tested with five selected AAs: Ala, Phe, Tyr, His, and Asp. Using an α-hemolysin nanopore, we demonstrated the feasibility of derivatization-assisted identification of AAs regardless of their charge composition and polarity. The method was further applied to discriminate each individual AA in testing data sets using their established nanopore profiles from training data sets. We envision that this proof-of-concept study will not only pave a way for identification of individual AAs but also lead to future applications in protein/peptide sequencing using the nanopore technology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。