Immediate and delayed decrease of long term potentiation and memory deficits after neonatal intermittent hypoxia

新生儿间歇性缺氧后长期增强和记忆缺陷的即时和延迟下降

阅读:7
作者:Ivan Goussakov, Sylvia Synowiec, Vasily Yarnykh, Alexander Drobyshevsky

Abstract

Apnea of prematurity is a common clinical condition that occurs in premature infants and results in intermittent hypoxia (IH) to brain and other organs. While short episodes of apnea are considered of no clinical significance, prolonged apnea with bradycardia and large oxygen desaturation is associated with adverse neurological and cognitive outcome. The mechanisms of cognitive deficits in IH are poorly understood. We hypothesized that brief but multiple episodes of severe oxygen desaturation accompanied by bradycardia may affect early and late synaptic plasticity and produce long-term cognitive deficits. C57BL/6 mouse pups were exposed to IH paradigm consisting of alternating cycles of 5% oxygen for 2.5 min and room air for 5-10 min, 2 h a day from P3 to P7. Long term potentiation (LTP) of synaptic strength in response to high frequency stimulation in hippocampal slices were examined 3 days and 6 weeks after IH. LTP was decreased in IH group relative to controls at both time points. That decrease was associated with deficits in spatial memory on Morris water maze and context fear conditioning test. Hypomyelination was observed in multiple gray and white matter areas on in vivo MRI using micromolecule proton fraction and ex vivo diffusion tensor imaging. No difference in caspase labeling was found between control and IH groups. We conclude that early changes in synaptic plasticity occurring during severe episodes of neonatal IH and persisting to adulthood may represent functional and structural substrate for long term cognitive deficits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。