Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in TMEM141, DDHD2, and LHFPL5

因 TMEM141、DDHD2 和 LHFPL5 双等位基因功能丧失变异导致的神经发育障碍家族的全景变异分析

阅读:5
作者:Liwei Sun #, Xueting Yang #, Amjad Khan #, Xue Yu, Han Zhang, Shirui Han, Xiaerbati Habulieti, Yang Sun, Rongrong Wang, Xue Zhang

Abstract

Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。