Ammonia exposure affects the mRNA and protein expression levels of certain Rhesus glycoproteins in the gills of climbing perch

氨暴露影响攀鲈鳃中某些恒河猴糖蛋白的 mRNA 和蛋白质表达水平

阅读:8
作者:Xiu L Chen, Biyan Zhang, You R Chng, Jasmine L Y Ong, Shit F Chew, Wai P Wong, Siew H Lam, Tsutomu Nakada, Yuen K Ip

Abstract

The freshwater climbing perch, Anabas testudineus, is an obligate air-breathing and euryhaline teleost capable of active ammonia excretion and tolerant of high concentrations of environmental ammonia. As Rhesus glycoproteins (RhGP/Rhgp) are known to transport ammonia, this study aimed to obtain the complete cDNA coding sequences of various rhgp isoforms from the gills of A. testudineus, and to determine their mRNA and protein expression levels during 6 days of exposure to 100 mmol l-1 NH4Cl. The subcellular localization of Rhgp isoforms in the branchial epithelium was also examined in order to elucidate the type of ionocyte involved in active ammonia excretion. Four rhgp (rhag, rhbg, rhcg1 and rhcg2) had been identified from the gills of A. testudineus They had conserved amino acid residues for NH4+ binding, NH4+ deprotonation, channel gating and lining of the vestibules. Despite inwardly directed NH3 and NH4+ gradients, there were significant increases in the mRNA expression levels of the four branchial rhgp in A. testudineus at certain time points during 6 days of ammonia exposure, with significant increases in the protein abundances of Rhag and Rhcg2 on day 6. Immunofluorescence microscopy revealed a type of ammonia-inducible Na+/K+-ATPase α1c-immunoreactive ionocyte with apical Rhag and basolateral Rhcg2 in the gills of fish exposed to ammonia for 6 days. Hence, active ammonia excretion may involve NH4+ entering the ionocyte through the basolateral Rhcg2 and being excreted through the apical Rhag, driven by a transapical membrane electrical potential generated by the apical cystic fibrosis transmembrane conductance regulator Cl- channel, as suggested previously.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。