Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole

对乙酰氨基酚和四氢茚并吲哚对小鼠预防奥氮平诱导的代谢毒性

阅读:7
作者:H G Shertzer, E L Kendig, H A Nasrallah, E Johansson, M B Genter

Conclusions

We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.

Objective

In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ. Design and measurement: C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg(-1) body weight), alone or with APAP (30 mg kg(-1) body weight) or THII (4.5 mg kg(-1) body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined.

Results

OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O(2) uptake and H(2)O(2) production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT. Conclusions: We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。