MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a

MicroRNA-410通过下调Wnt3a促进人骨髓间充质干细胞向软骨细胞分化

阅读:5
作者:Yanjie Zhang, Xiaohan Huang, Yanhao Yuan

Background

Chondrogenic differentiation of mesenchymal stem cells (MSCs) is important for osteoarthritis (OA) treatment. However, the specific mechanisms involved are undefined. MicroRNAs (miRNAs) downregulate protein synthesis by binding to the 3'UTR of target mRNA.

Conclusion

miR-410 is a key regulator of MSC chondrogenic differentiation and directly targets Wnt3a triggering the Wnt signaling pathway.

Methods

Bone marrow aspirates were obtained from OA patients undergoing total hip arthroplasty (n=8) to isolate MSCs. MiR-410 or miR-410 inhibitor were transfected into MSCs using lentivirus and the effects were assessed. Alcian blue staining detected differences in chondrogenic differentiation. An MTT assay and flow cytometry determined changes in cell proliferation and cell cycle, respectively. Real time PCR assessed differences in miRNA and mRNA expression levels and western blotting detected changes in protein levels. ChIP assessed differences in transcriptional activation. TOP/FOP determined changes in the activity of the Wnt signaling pathway. A dual-luciferase reporter assay was used to confirm the miR-410 target protein.

Results

miR-410 was elevated during transforming growth factor β3 (TGF-β3)-induced chondrogenic differentiation of MSCs. miR-410 targeted a putative binding site in the 3'-UTR of the Wnt3a gene, thus regulating the Wnt signaling pathway. miR-410 transfection increased mRNA and protein levels of four chondrogenic markers, type II collagen (Col2a1), SRY-box 9 (Sox9), aggrecan (ACAN), and hyaluronan synthase 2 (Has2). miR-410 overexpression decreased Wnt3a protein expression. Wnt3a levels increased in OA patient cartilage concomitant with OA severity and significantly negatively correlated with miR-410 levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。