Flavonoid 4,4'-dimethoxychalcone suppresses cell proliferation via dehydrogenase inhibition and oxidative stress aggravation

类黄酮 4,4'-二甲氧基查耳酮通过抑制脱氢酶和加剧氧化应激来抑制细胞增殖

阅读:4
作者:Changmei Yang, Songbiao Zhu, Yuling Chen, Zongyuan Liu, Wenhao Zhang, Chongchong Zhao, Chengting Luo, Haiteng Deng

Abstract

Flavonoids are natural polyphenolic compounds with a diverse array of biological activities and health-promoting effects. Recent studies have found that 4,4'-dimethoxychalcone (DMC) promoted longevity via autophagy; however, its targets are currently unknown. Herein, we employed an unbiased thermal proteome profiling (TPP) method and identified multiple targets of DMC, including ALDH1A3, ALDH2, and PTGES2. We further determined the dissociation constant (Kd) of DMC and ALDH1A3 to be 2.8 μM using microscale thermophoresis (MST) analysis, which indicated that DMC inhibited ALDH1A3 activity and aggravated cellular oxidative stress. DMC treatment significantly increased cellular reactive oxygen species (ROS) production and inhibited cancer cell growth. Quantitative proteomic analysis showed that DMC upregulated proteins associated with stress-responses and downregulated proteins associated with cell cycle progression, and this was confirmed using cell cycle analysis. Taken together, we showed that TPP is an effective tool with which to identify flavonoid targets and set a precedent for deciphering flavonoid function in the future. We have demonstrated that DMC inhibited cell proliferation via ROS-induced cell cycle arrest and is an anti-proliferative agent in cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。