Role of Norepinephrine in IL-1β-Induced Chondrocyte Dedifferentiation under Physioxia

去甲肾上腺素在生理氧诱导的IL-1β诱导软骨细胞去分化中的作用

阅读:5
作者:Saskia Speichert, Natalie Molotkov, Karima El Bagdadi, Andrea Meurer, Frank Zaucke, Zsuzsa Jenei-Lanzl

Abstract

As part of the pathogenesis of osteoarthritis (OA), chondrocytes lose their phenotype and become hypertrophic, or dedifferentiate, mainly driven by interleukin-1β (IL-1β). The contribution of other factors to the dedifferentiation process is not completely understood. Recent studies suggested a dose-dependent role for the sympathetic neurotransmitter norepinephrine (NE) in OA chondrocyte metabolism. Therefore, the aim of this study was to analyze the contribution of NE (10-8 M, 10-6 M) to human articular OA chondrocyte dedifferentiation in the absence or presence of IL-1β (0.5 ng/mL). Here, we demonstrate that OA chondrocytes express α2A-, α2C- and β2-adrenoceptors (AR) and show the characteristic shift towards a fibroblast-like shape at day 7 in physioxic monolayer culture. NE alone did not affect morphology but, in combination with IL-1β, markedly accelerated this shift. Moderate glycosaminoglycan (GAG) staining was observed in untreated and NE-treated cells, while IL-1β strongly decreased GAG deposition. IL-1β alone or in combination with NE decreased SOX9, type II collagen, COMP, and aggrecan, and induced MMP13 and ADAMTS4 gene expression, indicating an accelerated dedifferentiation. NE alone did not influence gene expression and did not modulate IL-1β-mediated effects. In conclusion, these results indicate that low-grade inflammation exerts a dominant effect on chondrocyte dedifferentiation and should be targeted early in OA therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。