Systemic inhibition or global deletion of CaMKK2 protects against post-traumatic osteoarthritis

系统性抑制或整体删除 CaMKK2 可预防创伤后骨关节炎

阅读:5
作者:E Mével, J A Shutter, X Ding, B T Mattingly, J N Williams, Y Li, A Huls, A V Kambrath, S B Trippel, D Wagner, M R Allen, R O'Keefe, W R Thompson, D B Burr, U Sankar

Conclusions

Our findings reveal a novel function for CaMKK2 in chondrocytes and highlight the potential for its inhibition as an innovative therapeutic strategy in the prevention of PTOA.

Methods

Destabilization of the medial meniscus (DMM) or sham surgeries were performed on 10-week-old male wild-type (WT) and Camkk2-/- mice. Half of the DMM-WT mice and all other cohorts (n = 6/group) received tri-weekly intraperitoneal (i.p.) injections of saline whereas the remaining DMM-WT mice (n = 6/group) received i.p. injections of the CaMKK2 inhibitor STO-609 (0.033 mg/kg body weight) thrice a week. Study was terminated at 8- or 12-weeks post-surgery, and knee joints processed for microcomputed tomography imaging followed by histology and immunohistochemistry. Primary articular chondrocytes were isolated from knee joints of 4-6-day-old WT and Camkk2-/- mice, and treated with 10 ng/ml interleukin-1β (IL)-1β for 24 or 48 h to investigate gene and protein expression.

Objective

To investigate the role of Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2) in post-traumatic osteoarthritis (PTOA).

Results

CaMKK2 levels and activity became elevated in articular chondrocytes following IL-1β treatment or DMM surgery. Inhibition or absence of CaMKK2 protected against DMM-associated destruction of the cartilage, subchondral bone alterations and synovial inflammation. When challenged with IL-1β, chondrocytes lacking CaMKK2 displayed attenuated inflammation, cartilage catabolism, and resistance to suppression of matrix synthesis. IL-1β-treated CaMKK2-null chondrocytes displayed decreased IL-6 production, activation of signal transducer and activator of transcription 3 (Stat3) and matrix metalloproteinase 13 (MMP13), indicating a potential mechanism for the regulation of inflammatory responses in chondrocytes by CaMKK2. Conclusions: Our findings reveal a novel function for CaMKK2 in chondrocytes and highlight the potential for its inhibition as an innovative therapeutic strategy in the prevention of PTOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。