Characterizing natural variability of lignin abundance and composition in fine roots across temperate trees: a comparison of analytical methods

表征温带树木细根木质素丰度和成分的自然变异:分析方法的比较

阅读:7
作者:Mengxue Xia, Oscar J Valverde-Barrantes, Vidya Suseela, Christopher B Blackwood, Nishanth Tharayil

Abstract

Lignin is an important root chemical component that is widely used in biogeochemical models to predict root decomposition. Across ecological studies, lignin abundance has been characterized using both proximate and lignin-specific methods, without much understanding of their comparability. This uncertainty in estimating lignin limits our ability to comprehend the mechanisms regulating root decomposition and to integrate lignin data for large-scale syntheses. We compared five methods of estimating lignin abundance and composition in fine roots across 34 phylogenetically diverse tree species. We also assessed the feasibility of high-throughput techniques for fast-screening of root lignin. Although acid-insoluble fraction (AIF) has been used to infer root lignin and decomposition, AIF-defined lignin content was disconnected from the lignin abundance estimated by techniques that specifically measure lignin-derived monomers. While lignin-specific techniques indicated lignin contents of 2-10% (w/w) in roots, AIF-defined lignin contents were c. 5-10-fold higher, and their interspecific variation was found to be largely unrelated to that determined using lignin-specific techniques. High-throughput pyrolysis-gas chromatography-mass spectrometry, when combined with quantitative modeling, accurately predicted lignin abundance and composition, highlighting its feasibility for quicker assessment of lignin in roots. We demonstrate that AIF should be interpreted separately from lignin in fine roots as its abundance is unrelated to that of lignin polymers. This study provides the basis for informed decision-making with respect to lignin methodology in ecology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。