C698R mutation in Lrsam1 gene impairs nerve regeneration in a CMT2P mouse model

Lrsam1 基因 C698R 突变会损害 CMT2P 小鼠模型中的神经再生

阅读:4
作者:Daniel Moiseev, Zafar Wazir, Donghao Liu, Jun Li, Bo Hu

Abstract

Missense mutation C694R in the RING domain of the LRSAM1 gene results in a dominantly inherited polyneuropathy, Charcot-Marie-Tooth disease type 2P (CMT2P). We have generated and characterized a Lrsam1C698R knock-in mouse model produced through CRISPR/Cas9 technology. Both heterozygous (Lrsam1+/C698R) and homozygous (Lrsam1C698/C698R) knock-in mice exhibited normal motor functions on behavioral tests as well as normal on nerve conduction studies. Axonal density and myelin thickness were not significantly different between mutants and wild-type mice by sciatic nerve morphometric analysis up to 17 months of age. In line with these normal findings, protein-protein interactions between mutant LRSAM1 and RNA-binding proteins (such as FUS and G3BP1) were still present in mouse cells, which differs from the disrupted interactions between these proteins in human CMT2P cells. However, after crush nerve injury, Lrsam1+/C698R mice had a mild, but statistically significant, reduced compound nerve action potential and conduction velocity during recovery. Therefore, C698R mutation results in a mild impaired nerve regeneration in mice. We speculate that repetitive nerve injuries may, at least partially, contribute to the slowly progressive axonal loss in CMT2P.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。