Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome

识别关键的潜在调控网络并预测普拉德-威利综合征中孤儿 C/D 框 SNORD116 snoRNA 的靶标

阅读:4
作者:Rachel B Gilmore, Yaling Liu, Christopher E Stoddard, Michael S Chung, Gordon G Carmichael, Justin Cotney

Abstract

Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily SNORD116. This finding suggests SNORD116 is a direct driver of PWS phenotypes. The SNORD116 gene cluster is composed of 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However, SNORD116 snoRNAs are termed 'orphans' because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of SNORD116 snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted SNORD116 targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。