Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3

孕烷 X 受体配体对人类 OATP1B1 和 OATP1B3 介导的运输的影响

阅读:4
作者:Chunshan Gui, Yi Miao, Lucas Thompson, Bret Wahlgren, Melissa Mock, Bruno Stieger, Bruno Hagenbuch

Abstract

The pregnane X receptor is a ligand-activated transcription factor that is abundantly expressed in hepatocytes. Numerous drugs are pregnane X receptor ligands. To bind to their receptor they must cross the sinusoidal membrane. Organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) are polyspecific transporters expressed at the sinusoidal membrane of human hepatocytes. They mediate transport of a variety of drugs including the pregnane X receptor ligands rifampicin and dexamethasone. To test whether additional pregnane X receptor ligands interact with OATP1B1- and 1B3-mediated transport, we developed Chinese Hamster Ovary (CHO) cell lines stably expressing OATP1B1 or 1B3 at high levels. OATP1B1- and 1B3-mediated estradiol-17beta-glucuronide uptake was inhibited by several pregnane X receptor ligands in a concentration dependent way. IC(50) values for rifampicin, paclitaxel, mifepristone, and troglitazone were within their respective pharmacological free plasma concentrations. Kinetic analysis revealed that clotrimazole inhibits OATP1B1-mediated estradiol-17beta-glucuronide transport with a K(i) of 7.7+/-0.3 microM in a competitive way. However, uptake of OATP1B3-mediated estradiol-17beta-glucuronide was stimulated and this stimulation was due to an increased apparent affinity. Transport of estrone-3-sulfate was hardly affected while all other substrates tested were inhibited. Additional azoles like fluconazole, ketoconazole and miconazole did not stimulate OATP1B3-mediated estradiol-17beta-glucuronide transport. In summary, these results demonstrate that pregnane X receptor ligands, by inhibiting or stimulating OATP-mediated uptake, can lead to drug-drug interactions at the transporter level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。