Discussion
Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse. We propose that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.
Methods
In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD.
Results
We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with accumulation of phospho-tau immunostaining contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 staining density depended on APOE genotype in the human tissue examined.
