Redox regulation of diaphragm proteolysis during mechanical ventilation

机械通气过程中膈肌蛋白水解的氧化还原调节

阅读:3
作者:J M McClung, M A Whidden, A N Kavazis, D J Falk, K C Deruisseau, S K Powers

Abstract

Prevention of oxidative stress via antioxidants attenuates diaphragm myofiber atrophy associated with mechanical ventilation (MV). However, the specific redox-sensitive mechanisms responsible for this remain unknown. We tested the hypothesis that regulation of skeletal muscle proteolytic activity is a critical site of redox action during MV. Sprague-Dawley rats were assigned to five experimental groups: 1) control, 2) 6 h of MV, 3) 6 h of MV with infusion of the antioxidant Trolox, 4) 18 h of MV, and 5) 18 h of MV with Trolox. Trolox did not attenuate MV-induced increases in diaphragmatic levels of ubiquitin-protein conjugation, polyubiquitin mRNA, and gene expression of proteasomal subunits (20S proteasome alpha-subunit 7, 14-kDa E2, and proteasome-activating complex PA28). However, Trolox reduced both chymotrypsin-like and peptidylglutamyl peptide hydrolyzing (PGPH)-like 20S proteasome activities in the diaphragm after 18 h of MV. In addition, Trolox rescued diaphragm myofilament protein concentration (mug/mg muscle) and the percentage of easily releasable myofilament protein independent of alterations in ribosomal capacity for protein synthesis. In summary, these data are consistent with the notion that the protective effect of antioxidants on the diaphragm during MV is due, at least in part, to decreasing myofilament protein substrate availability to the proteasome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。