Nitazoxanide induced myocardial injury in zebrafish embryos by activating oxidative stress response

硝唑尼特通过激活氧化应激反应诱导斑马鱼胚胎心肌损伤

阅读:8
作者:Fanghua Gong, Tianzhu Shen, Jiangnan Zhang, Xuye Wang, Guoqiang Fan, Xiaofang Che, Zhaopeng Xu, Kun Jia, Yong Huang, Xiaokun Li, Huiqiang Lu

Abstract

Nitazoxanide (NTZ) is a broad-spectrum antiparasitic and antiviral drug (thiazole). However, although NTZ has been extensively used, there are no reports concerning its toxicology in vertebrates. This study used the zebrafish as a vertebrate model to evaluate the safety of NTZ and to analyse the related molecular mechanisms. The experimental results showed that zebrafish embryos exposed to NTZ had cardiac malformation and dysfunction. NTZ also significantly inhibited proliferation and promoted apoptosis in cardiomyocytes. Transcriptomic analysis used compared gene expression levels between zebrafish embryos in the NTZ treatment and the control groups identified 200 upregulated genes and 232 downregulated genes. Analysis by Kyoto encyclopaedia of genes and genomes (KEGG) and gene ontology (GO) showed that signal pathways on cardiomyocyte development were inhibited while the oxidative stress pathways were activated. Further experiments showed that NTZ increased the content of reactive oxygen species (ROS) in the hearts of zebrafish. Antioxidant gadofullerene nanoparticles (GFNPs) significantly alleviated the developmental toxicity to the heart, indicating that NTZ activated the oxidative stress response to cause embryonic cardiomyocyte injury in zebrafish. This study provides evidence that NTZ causes developmental abnormalities in the cardiovascular system of zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。