Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter

囊泡乙酰胆碱转运体水平降低的小鼠体内乙酰胆碱的定量释放

阅读:5
作者:Ricardo de Freitas Lima, Vania F Prado, Marco A M Prado, Christopher Kushmerick

Abstract

Mammalian motor nerve terminals contain hundreds of thousands of synaptic vesicles, but only a fraction of these vesicles is immediately available for release, the remainder forming a reserve pool. The supply of vesicles is replenished through endocytosis, and newly formed vesicles are refilled with acetylcholine through a process that depends on the vesicular acetylcholine transporter (VAChT). During expression of short-term plasticity, quantal release can be increased, but it is unknown whether this reflects enhanced recruitment of vesicles from the reserve pool or rapid recycling. We examined spontaneous and evoked release of acetylcholine at endplates from genetically modified VAChT KD(HOM) mice that express approximately 30% of the normal level of VAChT to determine steps rate-limited by synaptic vesicle filling. Quantal content and quantal size were reduced in VAChT KD(HOM) mice compared with wild-type controls. Although high-frequency stimulation did not reduce quantal size further, the post-tetanic increase in end-plate potential amplitude or MEPP frequency was significantly smaller in VAChT KD(HOM) mice. This was the case even when tetanic depression was eliminated using an extracellular solution containing reduced Ca(2+) and raised Mg(2+). These results reveal the dependence of short-term plasticity on the level of VAChT expression and efficient synaptic vesicle filling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。