Induction of Galphas contributes to the paradoxical stimulation of cytosolic phospholipase A2alpha expression by cortisol in human amnion fibroblasts

Galphas 的诱导有助于皮质醇在人羊膜成纤维细胞中反常地刺激胞浆磷脂酶 A2alpha 的表达

阅读:7
作者:Chunming Guo, Jianneng Li, Leslie Myatt, Xiaoou Zhu, Kang Sun

Abstract

Cytosolic phospholipase A (cPLA(2alpha)) catalyzes the formation of arachidonic acid in prostaglandin synthesis. In contrast to the well-described down-regulation of cPLA(2alpha), up-regulation of cPLA(2alpha) by glucocorticoids has been reported in human amnion fibroblasts, which may play a key role in parturition. The mechanisms underlying this paradoxical induction of cPLA(2alpha) by glucocorticoids remain largely unknown. Using cultured human amnion fibroblasts, we found that the induction of cPLA(2alpha) by cortisol required ongoing transcription and synthesis of at least one other protein. The induction of cPLA(2alpha) by cortisol was abolished by mutagenesis of a glucocorticoid response element (GRE) in the promoter. The same GRE was found mediating the classical inhibition of cPLA(2alpha) expression by cortisol in human fetal lung fibroblasts (HFL-1). Cortisol increased Galpha(s) expression in amnion fibroblasts but not in HFL-1 cells. Inhibition of Galpha(s) with NF449 attenuated the phosphorylation of cAMP response element-binding protein-1 (CREB-1) and the induction of cPLA(2alpha) by cortisol in amnion fibroblasts. Both glucocorticoid receptor (GR) and CREB-1 were found bound to the GRE upon cortisol stimulation of amnion fibroblasts. The induction of cPLA(2alpha) by cortisol was blocked by GR antagonist RU486 or protein kinase A inhibitor H89 or dominant-negative CREB-1. In conclusion, cortisol activates the cAMP/protein kinase A/CREB-1 pathway via Galpha(s) induction, and the phosphorylated CREB-1 interacts with GR at the GRE to promote cPLA(2alpha) expression in amnion fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。