NDS27 combines the effect of curcumin lysinate and hydroxypropyl-β-cyclodextrin to inhibit equine PKCδ and NADPH oxidase involved in the oxidative burst of neutrophils

NDS27 结合姜黄素赖氨酸盐和羟丙基-β-环糊精的作用,抑制参与中性粒细胞氧化爆发的马 PKCδ 和 NADPH 氧化酶

阅读:3
作者:Sandrine Derochette, Ange Mouithys-Mickalad, Thierry Franck, Simon Collienne, Justine Ceusters, Ginette Deby-Dupont, Philippe Neven, Didier Serteyn

Abstract

Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2 (•) (-)), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. The purpose of this study was to compare the antioxidant effect of NDS27 and NDS28, two water-soluble forms of curcumin lysinate respectively complexed with hydroxypropyl-β-cyclodextrin (HPβCD) and γ-cyclodextrin (γ-CD), on the activity of Nox2 and PKCδ, involved in the Nox2 activation pathway. Our results, showed that NDS27 is the best inhibitor for Nox2 and PKCδ. This was illustrated by the combined effect of HPβCD and curcumin lysinate: HPβCD, but not γ-CD, improved the release of curcumin lysinate and its exchange against lipid or cholesterol as demonstrated by the lipid colouration with Oil Red O, the extraction of radical lipophilic probes recorded by ESR and the HPLC measurements of curcumin. HPβCD not only solubilised and transported curcumin, but also indirectly enhanced its action on both PKC and Nox2 activities. The modulatory effect of NDS27 on the Nox2 activation pathway of neutrophils may open therapeutic perspectives for the control of pathologies with excessive inflammatory reactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。