IRF5 Signaling in Phagocytes Is Detrimental to Neonatal Hypoxic Ischemic Encephalopathy

吞噬细胞中的 IRF5 信号传导对新生儿缺氧缺血性脑病有害

阅读:6
作者:Abdullah Al Mamun, Haifu Yu, Romana Sharmeen, Louise D McCullough, Fudong Liu

Abstract

Immune responses to neonatal hypoxic ischemic encephalopathy (HIE) exacerbate brain injury. Phagocytes, including microglia, play a central role in the immune response, but how the activation of phagocytes is regulated remains elusive. Previously, we have reported that interferon regulatory factor 5 (IRF5) signaling is closely correlated with a pro-inflammatory microglial phenotype in adult mice after stroke. The present study investigated IRF5's regulatory role in post-HIE inflammation. Male IRF5 conditional knockout (CKO) and IRF5fl/fl postnatal day 10 (P10) pups were subjected to the Rice-Vannucci model (RVM) to induce HIE. Outcomes including morphological and neurobehavioral changes were evaluated at day 7 after HIE. Microglia/macrophage phenotypes and inflammatory responses were evaluated by flow cytometry (FC), RT-PCR, and multiplex cytokine assays. Lenti-IRF5 virus was administered in microglia-neuron co-cultures to evaluate the effects of microglial IRF5 upregulation in ischemic neurons exposed to oxygen-glucose deprivation (OGD). Deletion of phagocytic IRF5 resulted in significantly decreased IRF5 expression, attenuated pro-inflammatory and enhanced anti-inflammatory responses to HIE, and improved outcomes compared with IRF5fl/fl control pups. In vitro lentivirus transfection experiments revealed that overexpression of IRF5 in microglia amplified pro-inflammatory signals and exacerbated OGD-induced neuronal apoptosis and neurite fragmentation. IRF5 signaling mediates microglial pro-inflammatory activation and also affects anti-inflammatory responses. Phagocytic IRF5 signaling is detrimental in HIE and is a potential therapeutic target for post-ischemic inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。