Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression

利什曼原虫细胞外囊泡中存在的甘油醛-3-磷酸脱氢酶抑制宿主 TNF-α 表达

阅读:6
作者:Priya Das, Aditi Mukherjee, Subrata Adak

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills various physiological roles that are unrelated to its glycolytic function. However, to date, the nonglycolytic function of GAPDH in trypanosomal parasites is absent from the literature. Exosomes secreted from Leishmania, like entire parasites, were found to have a significant impact on macrophage cell signaling and function, indicating cross talk with the host immune system. In this study, we demonstrate that the Leishmania GAPDH (LmGAPDH) protein is highly enriched within the extracellular vesicles (EVs) secreted during infection. To understand the function of LmGAPDH in EVs, we generated control, overexpressed, half-knockout (HKO), and complement cell lines. HKO cells displayed lower virulence compared with control cells when macrophages and BALB/c mice were infected with them, implying a crucial role for LmGAPDH in Leishmania infection and disease progression. Furthermore, upon infection of macrophages with HKO mutant Leishmania and its EVs, despite no differences in TNFA mRNA expression, there was a considerable increase in TNF-α protein expression compared with control, overexpressed, and complement parasites as determined by ELISA, RT-PCR, and immunoblot data. In vitro protein translation studies suggest that LmGAPDH-mediated TNF-α suppression occurs in a concentration-dependent manner. Moreover, mRNA binding assays also verified that LmGAPDH binds to the AU-rich 3'-UTR region of TNFA mRNA, limiting its production. Together, these findings confirmed that the LmGAPDH contained in EVs inhibits TNF-α expression in macrophages during infection via posttranscriptional repression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。