Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity

多巴胺受体 D1 的激活通过调节自噬活性来抑制胶质母细胞瘤的致瘤性

阅读:6
作者:Kang Yang, Minghai Wei, Zhaofei Yang, Zhenfa Fu, Ruixue Xu, Cheng Cheng, Xi Chen, Sheng Chen, Eric Dammer, Weidong Le

Conclusions

From our data we conclude that DRD1 activation inhibits GBM cell growth and may serve as an alternative avenue for the design of future GBM therapies.

Methods

Immunofluorescence, immunohistochemistry and Western blotting were used to detect dopamine receptor expression in primary human GBM tissues. In addition, clinical data of GBM patients downloaded from The Cancer Genome Atlas (TCGA) were analyzed. Image-based tracking analysis of LC3 using a mCherry-eGFP-LC3 plasmid was utilized to monitor autophagic flux. Transmission electron microscopy (TEM) was used to visualize aggregation of autophagosomes/autolysosomes. Finally, DRD1 agonist (SKF83959)-induced inhibition of GBM growth was assessed in vitro and in vivo.

Purpose

Recent studies have reported important roles of dopamine receptors in the early development and progression of glioblastoma (GBM). Here, we tested the antitumor activity of a Dopamine receptor D1 (DRD1) agonist, either alone or in combination with temozolomide (TMZ) on GBM cells.

Results

Positive DRD1 expression was observed in human GBM tissues and found to be related with a good clinical outcome. DRD1 activation specifically inhibited GBM cell growth and significantly disrupted autophagic flux, which led to tumor cell death. Moreover, we found that DRD1 agonist treatment inhibited auto-lysosomal degradation in GBM cells and that this process was calcium overload dependent and related to inhibition of mammalian target of rapamycin (mTOR). Finally, we found that DRD1 agonist and TMZ co-treatment yielded a synergistic therapeutic effect both in vivo and in vitro. Conclusions: From our data we conclude that DRD1 activation inhibits GBM cell growth and may serve as an alternative avenue for the design of future GBM therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。