Mast cell regranulation requires a metabolic switch involving mTORC1 and a glucose-6-phosphate transporter

肥大细胞再颗粒化需要一种涉及 mTORC1 和葡萄糖-6-磷酸转运蛋白的代谢转换。

阅读:1
作者:Jason A Iskarpatyoti ,Jianling Shi ,Mathew A Abraham ,Abhay P S Rathore ,Yuxuan Miao ,Soman N Abraham

Abstract

Mast cells (MCs) are granulated cells implicated in inflammatory disorders because of their capacity to degranulate, releasing prestored proinflammatory mediators. As MCs have the unique capacity to reform granules following degranulation in vitro, their potential to regranulate in vivo is linked to their pathogenesis. It is not known what factors regulate regranulation, let alone if regranulation occurs in vivo. We report that mice can undergo multiple bouts of MC regranulation following successive anaphylactic reactions. mTORC1, a nutrient sensor that activates protein and lipid synthesis, is necessary for regranulation. mTORC1 activity is regulated by a glucose-6-phosphate transporter, Slc37a2, which increases intracellular glucose-6-phosphate and ATP during regranulation, two upstream signals of mTOR. Additionally, Slc37a2 concentrates extracellular metabolites within endosomes, which are trafficked into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。