AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation

AKT 通过保护 SOX2 免受 UBR5 介导的降解来驱动食管癌中的 SOX2 过表达和癌细胞干性

阅读:7
作者:Zhen Wang, Li Kang, Huifang Zhang, Yuanyong Huang, Lan Fang, Menghan Li, Peter J Brown, Cheryl H Arrowsmith, Jiwen Li, Jiemin Wong

Abstract

As a transcription factor critical for embryonic and adult stem cell self-renewal and function, SOX2 gene amplification has been recognized as a driving factor for various cancers including esophageal cancer. SOX2 overexpression occurs more broadly in cancer than gene amplification, but the mechanism is poorly understood. Here we showed that in esophageal cancer cell lines the levels of SOX2 proteins are not directly correlated to the copy numbers of SOX2 genes and are strongly influenced by proteostasis. We showed that AKT is a major determinant for SOX2 overexpression and does so by protecting SOX2 from ubiquitin-dependent protein degradation. We identified UBR5 as a major ubiquitin E3 ligase that induces SOX2 degradation through ubiquitinating SOX2 at lysine 115. Phosphorylation of SOX2 at threonine 116 by AKT inhibits the interaction of UBR5 with SOX2 and thus stabilizes SOX2. We provided evidence that AKT inhibitor can effectively downregulate SOX2 and suppress esopheageal cancer cell proliferation and stemness. Taken together, our study provides new insight into the mechanism of SOX2 overexpression in cancer and evidence for targeting AKT as a potential therapeutic strategy for SOX2-positive cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。