Population genetic and field-ecological analyses return similar estimates of dispersal over space and time in an endangered amphibian

种群遗传学和野外生态学分析对濒危两栖动物的空间和时间扩散进行了类似的估计

阅读:7
作者:Ian J Wang, H Bradley Shaffer

Abstract

The explosive growth of empirical population genetics has seen a proliferation of analytical methods leading to a steady increase in our ability to accurately measure key population parameters, including genetic isolation, effective population size, and gene flow, in natural systems. Assuming they yield similar results, population genetic methods offer an attractive complement to, or replacement of, traditional field-ecological studies. However, empirical assessments of the concordance between direct field-ecological and indirect population genetic studies of the same populations are uncommon in the literature. In this study, we investigate genetic isolation, rates of dispersal, and population sizes for the endangered California tiger salamander, Ambystoma californiense, across multiple breeding seasons in an intact vernal pool network. We then compare our molecular results to a previously published study based on multiyear, mark-recapture data from the same breeding sites. We found that field and genetic estimates of population size were only weakly correlated, but dispersal rates were remarkably congruent across studies and methods. In fact, dispersal probability functions derived from genetic data and traditional field-ecological data were a significant match, suggesting that either method can be used effectively to assess population connectivity. These results provide one of the first explicit tests of the correspondence between landscape genetic and field-ecological approaches to measuring functional population connectivity and suggest that even single-year genetic samples can return biologically meaningful estimates of natural dispersal and gene flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。