Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells

预测前列腺癌的新药适应症:计算机蛋白质化学计量网络药理学平台与患者来源的原代前列腺细胞的整合

阅读:14
作者:Aisha Naeem, Sivanesan Dakshanamurthy, Henry Walthieu, Erika Parasido, Maria Avantaggiati, Lucas Tricoli, Deepak Kumar, Richard J Lee, Adam Feldman, Muhammad S Noon, Stephen Byers, Olga Rodriguez, Chris Albanese

Background

Drug repurposing enables the discovery of potential cancer treatments using publically available data from over 4000 published Food and Drug Administration approved and experimental drugs. However, the ability to effectively evaluate the drug's efficacy remains a challenge. Impediments to broad applicability include inaccuracies in many of the computational drug-target algorithms and a lack of clinically relevant biologic modeling systems to validate the computational data for subsequent translation.

Conclusions

Given that the drugs in the database are extremely well-characterized and that the patient-derived cells are easily scalable for high throughput drug screening, this combined in vitro and in silico approach may significantly advance personalized PCa treatment and for other cancer applications.

Methods

We have integrated our computational proteochemometric systems network pharmacology platform, DrugGenEx-Net, with primary, continuous cultures of conditionally reprogrammed (CR) normal and prostate cancer (PCa) cells derived from treatment-naive patients with primary PCa.

Results

Using the transcriptomic data from two matched pairs of benign and tumor-derived CR cells, we constructed drug networks to describe the biological perturbation associated with each prostate cell subtype at multiple levels of biological action. We prioritized the drugs by analyzing these networks for statistical coincidence with the drug action networks originating from known and predicted drug-protein targets. Prioritized drugs shared between the two patients' PCa cells included carfilzomib (CFZ), bortezomib (BTZ), sulforaphane, and phenethyl isothiocyanate. The effects of these compounds were then tested in the CR cells, in vitro. We observed that the IC50 values of the normal PCa CR cells for CFZ and BTZ were higher than their matched tumor CR cells. Transcriptomic analysis of CFZ-treated CR cells revealed that genes involved in cell proliferation, proteases, and downstream targets of serine proteases were inhibited while KLK7 and KLK8 were induced in the tumor-derived CR cells. Conclusions: Given that the drugs in the database are extremely well-characterized and that the patient-derived cells are easily scalable for high throughput drug screening, this combined in vitro and in silico approach may significantly advance personalized PCa treatment and for other cancer applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。