A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice

ipRGCs 的一个子集调节小鼠昼夜节律时钟的成熟和视网膜膝状体投射的分离

阅读:7
作者:Kylie S Chew, Jordan M Renna, David S McNeill, Diego C Fernandez, William T Keenan, Michael B Thomsen, Jennifer L Ecker, Gideon S Loevinsohn, Cassandra VanDunk, Daniel C Vicarel, Adele Tufford, Shijun Weng, Paul A Gray, Michel Cayouette, Erik D Herzog, Haiqing Zhao, David M Berson, Samer Hattar

Abstract

The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。