Sevoflurane Exposure Induces Neuronal Cell Ferroptosis Initiated by Increase of Intracellular Hydrogen Peroxide in the Developing Brain via ER Stress ATF3 Activation

七氟烷暴露通过内质网应激 ATF3 激活引起发育大脑中细胞内过氧化氢增加,从而引发神经元细胞铁死亡

阅读:5
作者:Liheng Kang, Meihua Piao, Nan Liu, Wanping Gu, Chunsheng Feng

Abstract

Neuronal cell death is acknowledged as the primary pathological basis underlying developmental neurotoxicity in response to sevoflurane exposure, but the exact mechanism remains unclear. Ferroptosis is a form of programmed cell death characterized by iron-dependent lipid peroxidation that is driven by hydrogen peroxide (H2O2) and ferrous iron through the Fenton reaction and participates in the pathogenesis of multiple neurological diseases. As stress response factor, activating transcription factor 3 (ATF3) can be activated by the PERK/ATF4 pathway during endoplasmic reticulum (ER) stress, followed by increased intracellular H2O2, which is involved in regulation of apoptosis, autophagy, and ferroptosis. Here, we investigated whether ferroptosis and ATF3 activation were implicated in sevoflurane-induced neuronal cell death in the developing brain. The results showed that sevoflurane exposure induced neuronal death as a result of iron-dependent lipid peroxidation damage secondary to H2O2 accumulation and ferrous iron increase, which was consistent with the criteria for ferroptosis. Furthermore, we observed that increases in iron and H2O2 induced by sevoflurane exposure were associated with the upregulation and nuclear translocation of ATF3 in response to ER stress. Knockdown of ATF3 expression alleviated iron-dependent lipid peroxidation, which prevented sevoflurane-induced neuronal ferroptosis. Mechanistically, ATF3 promoted sevoflurane-induced H2O2 accumulation by activating NOX4 and suppressing catalase, GPX4, and SLC7A11 expression. Additionally, an increase in H2O2 was accompanied by the upregulation of TFR and TF and downregulation of FPN, which linked iron overload to ferroptosis induced by sevoflurane. Taken together, our results demonstrated that ER stress-mediated ATF3 activation contributed to sevoflurane-induced neuronal ferroptosis via H2O2 accumulation and the resultant iron overload.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。