Genetic inactivation of the translin/trax microRNA-degrading enzyme phenocopies the robust adiposity induced by Translin (Tsn) deletion

translin/trax microRNA 降解酶的基因失活可模仿 translin (Tsn) 缺失引起的严重肥胖

阅读:6
作者:Xiuping Fu, Aparna P Shah, Zhi Li, Mengni Li, Kellie L Tamashiro, Jay M Baraban

Conclusion

Taken together, these findings indicate that inactivation of the TN/TX microRNA-degrading enzyme during development is necessary to drive the robust adiposity displayed by Tsn KO mice.

Methods

To test this hypothesis, we inserted a mutation, E126A, in Tsnax, the gene encoding TX, that abolishes the microRNA-degrading enzymatic activity of the TN/TX complex. In addition, to help define the cell types that drive the adiposity phenotype, we have also generated mice with floxed alleles of Tsn or Tsnax.

Objective

Deletion of Translin (Tsn) from mice induces an unusual metabolic profile characterized by robust adiposity, normal body weight and glucose tolerance. Translin (TN) protein and its partner, trax (TX), form the TN/TX microRNA-degrading enzyme. Since the microRNA system plays a prominent role in regulating metabolism, we reasoned that the metabolic profile displayed by Tsn KO mice might reflect dysregulation of microRNA signaling.

Results

Introduction of the E126A mutation in Tsnax does not impair expression of TN or TX proteins or their co-precipitation. Furthermore, these mice display selective increases in microRNAs that match those induced by Tsn deletion, confirming that this mutation in Tsnax inactivates the microRNA-degrading activity of the TN/TX complex. Mice homozygous for the Tsnax (E126A) mutation display a metabolic profile that closely mimics that of Tsn KO mice. Selective deletion of Tsn or Tsnax from either adipocytes or hepatocytes, two candidate cell types, does not phenocopy the elevated adiposity displayed by mice with constitutive Tsn deletion or the Tsnax (E126A) mutation. Furthermore, global, conditional deletion of Tsn in adulthood does not elicit increased adiposity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。