Muscarinic excitation of parvalbumin-positive interneurons contributes to the severity of pilocarpine-induced seizures

毒蕈碱样兴奋小白蛋白阳性中间神经元加剧了毛果芸香碱诱发的癫痫发作

阅读:5
作者:Feng Yi, Evan DeCan, Kurt Stoll, Eric Marceau, Karl Deisseroth, J Josh Lawrence

Methods

CA1 PV cells in PV-CRE mice were visualized with a floxed YFP or hM3Dq-mCherry adeno-associated virus, or by crossing PV-CRE mice with the RosaYFP reporter line. To eliminate M1 Rs from PV cells, we generated PV-M1 knockout (KO) mice by crossing PV-CRE and floxed M1 mice. Action potential (AP) frequency was monitored during application of pilocarpine (200 μm). In behavioral experiments, locomotion and seizure symptoms were recorded in wild-type (WT) or PV-M1 KO mice during PISs.

Objective

A common rodent model in epilepsy research employs the muscarinic acetylcholine receptor (mAChR) agonist pilocarpine, yet the mechanisms underlying the induction of pilocarpine-induced seizures (PISs) remain unclear. Global M1 mAChR (M1 R) knockout mice are resistant to PISs, implying that M1 R activation disrupts excitation/inhibition balance. Parvalbumin-positive (PV) inhibitory neurons express M1 Rs, participate in cholinergically induced oscillations, and can enter a state of depolarization block (DB) during epileptiform activity. Here, we test the hypothesis that pilocarpine activation of M1 Rs expressed on PV cells contributes to PISs.

Results

Pilocarpine significantly increased AP frequency in CA1 PV cells into the gamma range. In the continued presence of pilocarpine, a subset (5/7) of PV cells progressed to DB, which was mimicked by hM3Dq activation of Gq-receptor signaling. Pilocarpine-induced depolarization, AP firing at gamma frequency, and progression to DB were prevented in CA1 PV cells of PV-M1 KO mice. Finally, compared to WT mice, PV-M1 KO mice were associated with reduced severity of PISs. Significance: Pilocarpine can directly depolarize PV+ cells via M1 R activation, but a subset of these cells progress to DB. Our electrophysiologic and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated γ-aminobutyric acid (GABA)ergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs.

Significance

Pilocarpine can directly depolarize PV+ cells via M1 R activation, but a subset of these cells progress to DB. Our electrophysiologic and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated γ-aminobutyric acid (GABA)ergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。